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Abstract - A literature overview on the modeling of dynamic 
behavior of overhead cables with ice is presented in this paper, 
and directions for future work in this area are recommended. 
The main reasons of severe cable vibrations are the wind acting 
on asymmetrically iced cables, ice shedding, and unexpected 
events such as conductor breakage. A number of analytical and 
numerical models of cable vibrations due to these phenomena 
have been developed. A numerical tool used widely in recent 
developments is the finite element method. A finite element 
model of one span of an overhead cable will be constructed in the 
present project following various approaches from former 
publications. This model will serve as a basis for investigating the 
dynamics of overhead cables with different loads in our 
upcoming research. 
 

I.  INTRODUCTION 
VERHEAD transmission lines are exposed to various 
types of loads. Most of them act statically, like steady 

wind, ice accretion, temperature change, or maintenance and 
construction procedures, but some of them must be treated as 
dynamic loads, e.g. wind-induced vibrations, ice shedding, 
forces due to flashovers, or forces due to mechanical de-icing 
processes. Exceptional events, such as conductor breakage, 
tower collapse, or drop of conductor suspension assembly, 
may also cause severe dynamic loads. 

The most dangerous type of wind-induced vibration is the 
galloping that may cause severe damage in the shortest time. 
This fact justifies the great effort that has been made in the 
last four decades in order to study this motion and construct a 
realistic model. High jumps may occur in the transient state of 
cable vibration after a great amount of ice sheds from one or 
several spans of an overhead cable. This phenomenon 
damages some elements of the transmission line and leads to 
line failure in extreme cases. Similar problems arise due to 
vibrations developing in the intact spans of the cable 
following conductor breakage. The dynamic response of 
transmission lines due to these phenomena has also been 
studied in a number of publications. Finally, some of the 
mechanical de-icing techniques result in oscillations which 
may help to remove ice, but may also damage some elements 
of the transmission line. 

This paper presents a review on modeling of cable 
vibrations. It should be clear it is not possible to include all 

the existing models; only a fraction of them will be examined 
focusing on the ones dealing with galloping, vibrations due to 
ice shedding, and vibrations due to conductor breakage. 
Finally, the objectives of our research in this area will be 
summarized. 

II.  WIND-INDUCED VIBRATIONS 
Wind-induced vibrations are divided into three categories: 

(i) aeolian vibration, (ii) galloping, and (iii) wake-induced 
oscillation. A detailed description of these motions can be 
found in [6], herein a brief summary is included.  

The primary cause of aeolian vibration is the alternate 
shedding of wind-induced vortices from the top and bottom 
sides of the cable. Aeolian vibration of the cable occurs when 
the cable surface is bare and steady, and low-velocity winds (1 
to 7 m/s) are present. The peak-to-peak amplitude rarely 
exceeds one cable diameter, and the amplitude will decrease 
for higher velocity winds. The frequency of the vibration is 
approximately between 3 and 150 Hz.  

Galloping is usually caused by moderately strong, steady 
crosswinds acting upon an asymmetrically iced cable surface. 
This phenomenon has the effect of alternately changing the 
position of the ice deposit relative to the wind that the cable is 
exposed. If the upward velocity coincides with a positive 
aerodynamic lift force, and if the downward velocity is 
coincident with a negative lift force, accelerating gallop may 
result. The peak-to-peak amplitude of the gallop ranges from 5 
to 300 cable diameters, and may even exceed the sag of the 
cable. The frequency range of this type of cable motion is 0.08 
to 3 Hz, which is ten or often hundred times less than that of 
aeolian vibration.  

Wake-induced oscillation is peculiar to bundled conductors 
exposed to moderate to strong crosswinds (7 to 18 m/s), and 
arises from the shielding effect by windward subconductors 
on leeward ones. Although this motion may occur when there 
is ice on the conductor, or when it is rainy; it is usually 
observed when the conductor is bare and dry. The amplitude 
of vibration is usually not large, although it may appear up to 
80 cable diameters. The frequency of this kind of vibration is 
higher than that of galloping, but lower than that of aeolian 
vibration, as it appears in the range of 0.15 to 10 Hz.  
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Since galloping appears under icing conditions, and causes 
the most severe damage in a short time, models of this type 
will be discussed first. 

A.  One-Degree-of-Freedom (1DOF) Models of Galloping 
The investigation of galloping dates back to the 1930s, 

when a condition for this motion to build up, the so-called 
Den Hartog criterion, was derived [4]. The first theoretical 
models of galloping were also proposed a long time ago [15], 
[17], and have been followed by many further developments. 
A 1DOF model of vertical galloping, which represents the 
basic ideas of galloping models, will be presented in this 
subsection [2]. 

This model includes a spring-supported mass which is 
exposed to a steady horizontal flow of velocity U and density 
ρ as sketched in Fig. 1. The mass is allowed to move in the 
vertical direction. The vertical displacement is denoted by y. 
The mass and stiffness per unit length are m and , 

respectively. The steady fluid dynamic forces acting on the 
mass are the lift force and drag force per unit length: 

yk
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respectively. The width D is a dimension that describes the 
section of the mass, while  and  are the lift and drag 
aerodynamic coefficients, respectively. The equation of 
motion for this model is derived and the stability of the 
solution is examined in what follows. 

LC DC

 
 
Fig. 1. 1DOF model of vertical galloping 
 

When the model translates downward, the angle of attack 
may be obtained from the formula (see also Fig. 1): 

U
y&arctan−=α . (2) 

The velocity of the fluid relative to the moving mass is the 
vector sum of the free stream velocity and the induced vertical 
velocity: 
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The vertical force is the sum of the vertical components of lift 
and drag: 
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Substituting (1) into (4) yields the vertical force coefficient: 
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For small angles of attack, α,  and  may be 

approximated as follows: 
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where the terms in the power series for  may be computed 

by using (5): 
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The equation of motion for the model presented is written 
in the form: 
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where  is the damping factor due to dissipation within the 

structure, and 

yζ

m/k yy =ω  is the natural frequency in 

radians per second. Substituting (4) and (6) into (8) yields the 
following linear equation: 
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The term in parentheses is the net damping factor of vertical 
motion: 
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which is the sum of structural and aerodynamic components. 
The solution to (9) takes the form: 
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The net damping factor determines whether the vibration is 
stable. Vibrations will decay with time for all angles of attack 
for which 0>Tζ . Thus, the condition for stability of the 
model is as follows: 
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which is called Den Hartog criterion. By setting 0=Tζ , the 
critical velocity when galloping instability occurs may be 
obtained from (10): 
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where  is the natural frequency in cycles per second. yf
A 1DOF model of torsional galloping was also presented in 

[2]. The 1DOF motion of the mass in this model is described 
by the angle of rotation, θ, about a pivot. The angle of attack, 
α, changes with the angle θ, and the angular velocity dθ /dt. 
The dynamic force acting on the mass is the torque involving 
the torque coefficient, . This coefficient depends on the 
angle of attack, α, and the condition of galloping can be 
obtained in terms of 

MC

α∂∂ /CM . 

B.  Improved Models of Galloping 
Higher DOF models of galloping were developed by 

following the approach presented in the previous subsection. 
In these models, the aerodynamic coefficients are formulated 
as functions of the angle of attack, and, as such, they 
determine the aerodynamic force or torque.  

The simplest composition of the 1DOF models of vertical 
and torsional galloping is a 2DOF model that allows vertical 
translation and rotation of the mass [3]. Two nondimensional 
parameters are defined, relating to the aerodynamic force and 
the damping force in pure plunge and in pure torsion; and 
stability conditions are presented in the plane of these 
parameters. Inertially coupled vertical and torsional galloping 
was studied in [22] by considering eccentricity, i.e. the 
distance between the center of mass and the elastic axis, in the 
2DOF system. An alternate 2DOF model was developed in 
[9], where the rotation of the cable was ignored, but the 
horizontal components of lift and drag forces were taken into 
account. 

A 3DOF oscillator was developed in [20] and [21]. In these 
studies, a 6DOF system is first formulated with the following 
general coordinates: longitudinal movements of the left and 
right supports of the cable, longitudinal, vertical and 
transverse movements of the cable as well as rotation of the 
cable. Then, the equations of motion of the 3DOF system are 
derived by eliminating the longitudinal displacement 
components. Finally, stability conditions as well as natural 
frequencies of the periodic, two-dimensional quasi-periodic 
and three-dimensional quasi-periodic motions are determined. 

The models discussed above represent the galloping of a 
single cable. The galloping of a multi-span transmission line, 
however, is more complicated, and the interactions between 
adjacent spans and their supports can be modeled most 
conveniently by applying discrete models. A multi-DOF finite 
element model was introduced in [5], where the stability of a 
cable with wind and ice load was examined. A three-node, 
isoparametric cable element having three translational and one 
torsional DOF at each node is used to model the conductors, 
while linear static springs simulate the insulator strings and 
remote spans. Support towers are either assumed to be rigid or 

their equivalent stiffnesses can be considered at the 
connection of the conductor and the insulator string. A finite 
element model of a transmission line will be discussed in more 
detail in the next section. 

A 3DOF hybrid model of galloping of a bundle conductor 
using finite element mode shapes was developed in [23]. In 
this model, the single cable approach is extended to a bundle 
configuration having any number of cables. Analytical 
methods are used to investigate the initiation conditions and 
steady state amplitudes of galloping, while mode shapes are 
determined numerically using the finite element technique. 

III.  FURTHER SOURCES OF CABLE VIBRATION 
Wind-induced vibrations were discussed in the previous 

section. Severe dynamic loads may also be caused by 
vibrations due to ice shedding, or by exceptional events such 
as conductor breakage. A survey of the modeling of cable 
vibration due to ice shedding and conductor breakage is 
presented in this section. 

A.  Ice shedding 
Ice shedding is a physical phenomenon that occurs when 

ice or snow on a conductor or ground wire suddenly drops off 
under certain temperature and wind conditions. The shedding 
mechanism is complex and difficult to precisely determine due 
to the great number of variables involved in the process. The 
analysis of ice deposits collected below or along the lines after 
ice shedding tends to confirm that the most probable 
detachment mechanisms are: (i) sudden release of the ice 
along the entire span, on one or several spans, (ii) movement 
of the ice along the cable toward the middle of the span where 
it suddenly drops off, and (iii) random detachment in lengths 
of 5 to 20 m along the entire span.  

Ice shedding generates strong cable motion, which applies 
transient dynamic forces to the towers and causes the cables to 
swing toward each other and/or toward the towers. These 
dynamic forces may result in consecutive collapses of the 
towers, while the reduced clearances can make the cable clash, 
leading to flashovers. The first studies on ice shedding 
concerned maximum jump height of a cable following sudden 
ice release. Former methods for calculating jump height are 
assessed and an alternate method is presented in [12]. A 
number of criteria for compact line design have been 
formulated according to the maximum jump height. A 
mathematical model was developed in [8] in order to study 
both the static and dynamic effects of ice shedding on 
overhead lines. In this paper, loads applied to the towers as 
well as the cable motion following ice shedding are examined, 
and simulation results are compared to experimental 
observations. 

A finite element model of a two-span transmission line is 
presented and several ice-shedding scenarios are discussed in 
[18], using the ADINA finite element software. The catenary 
configuration of this model is shown in Fig. 2. Two-
dimensional two-node isoparametric truss elements with large 
kinematics are used for cable modeling. Each cable element 
has four degrees of freedom corresponding to the horizontal 
and vertical translations at each end. A constant initial 
prestrain corresponding to the installation conditions is 
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prescribed as an initial condition for all cable elements. Cable 
material properties are defined for tension only, assuming the 
absence of compression and small strain Hookian tension. 
Cable is assumed to be perfectly flexible in bending and 
torsion. The Young’s moduli used in static and dynamic 
analyses are the same. Structural damping of the cable is 
modeled with equivalent viscous damping, while aerodynamic 
damping is not considered, due to its complexity. The 
flexibility of the towers and their foundations are not modeled 
and the cable ends are assumed to be rigidly fixed at both ends 
of the line section. The suspension string is modeled with 
two two-node beam elements. The damping of the insulator 
string is not modeled, because its effect is negligible 
compared to cable damping. Ice loads are simulated by 
increasing the density of the cable elements in the static 
analysis, and cable density is suddenly decreased in the 
dynamic analysis when ice shedding occurs. Also included in 
this paper are time histories of cable displacement and cable 
tension after ice shedding, as well as some conclusions about 
the effects of ice thickness, span length, partial ice shedding, 
elevation at central support, unequal spans, and number of 
spans on the dynamic response of the line section. 

 
 
Fig. 2. Catenary configuration of a transmission line with two spans for 
modeling its dynamic response due to ice shedding 

 
 Finite element modeling of the dynamic response of 
overhead transmission lines due to ice shedding makes it 
possible to simulate transmission line failures. For example, a 
tower failure following ice shedding was simulated in [19] by 
applying the model discussed above. 

B.  Conductor Breakage 
The most severe dynamic loads are usually associated with 

exceptional events such as cable breakage or tower collapse. 
Both experimental and theoretical studies have been done to 
understand better the line behavior under these effects, in 
order to improve line design. A technique for calculating the 
maximum impact load following the breakage of conductors 
or insulators is described in [16]. In this paper, the time 
history of cable tension after breakage was observed and the 
peak dynamic force was determined, based upon the 
conservation of energy principle. After breakage, indeed, the 
tension decreases rapidly to a minimum of the order of 5-30 % 
of the initial value and stays at this level for a few fractions of 
a second. Then, it increases to reach a first peak which 
coincides with the maximum swing of the suspension 
assembly. A series of peaks and notches follow until the final 
state is reached, typically few minutes after the cable 
breakage. Reflecting waves from the adjacent supports may 

cause considerable peak tensions on the first tower and a 
second higher peak occurs in many cases. A possible 
explanation of this process in terms of energy is provided in 
[16] as follows. The first peak is due to a sudden release of 
elastic energy stored in the first span adjacent to the breakage 
point. The system uses this energy to horizontally accelerate 
the released span away from this point. The second peak 
results from the transfer of gravitational energy to kinetic 
energy. Once the cable attains its highest possible position, it 
starts to fall down. This second peak reappears periodically 
until dynamic effects are completely dissipated. 

An extensive experimental investigation on the dynamic 
response of broken wires was carried out and results are 
reported in [13]. A mathematical model of the transient 
response of transmission lines due to conductor breakage was 
constructed in [11], and simulation results were validated by 
comparing them to experimental results published in [13]. The 
finite element software ADINA was used to formulate the 
model and solve the governing equations. The problem of 
conductor breakage in a transmission line section is a free-
vibration problem induced by a sudden release from an initial 
static configuration. Since the amplitudes of motion and the 
fluctuations in cable tension are usually large, this problem 
becomes a truly nonlinear one. Nonlinearity arises from 
different sources. The main sources of geometric nonlinearity 
are the cable action, the swinging motion of rigid suspension 
assembly as well as the large displacements and rotations of 
tower members. Material nonlinearity is also present though 
unimportant, and therefore is not considered in the model. In 
order to model the cable, two-node cable elements were 
chosen.  

Four three-span models were examined in [11]. Suspension 
rods are simulated as stiff elastic two-node truss elements in 
the first two models. The difference between them appears in 
the number of cable elements in the central span. The structure 
of these models is shown in Fig. 3(a). In the third model, 
support flexibility is simulated by a lumped mass-spring 
idealization of the support structures, as represented in Fig. 
3(b). The fourth model is more refined and includes the 
overhead ground wire, as shown in Fig. 3(c). None of the 
models includes damping. Cable breakage is simulated as an 
initial condition in a dynamic analysis. Time histories of cable 
tension and displacement are studied, and the two peaks in 
cable tension mentioned in the first paragraph of this 
subsection are obtained. The first peak tension is significantly 
reduced when support flexibility is assumed to be caused by 
the dissipation of elastic bending energy in the support 
structures modeled with springs. With the inclusion of the 
overhead ground wire in the model, the maximum 
displacement at the suspension point adjacent to the breakage 
point is reduced, which is mainly due to the lateral restraint 
imposed by the overhead ground wire. 

A more recently developed model [10] includes not only 
the cable and suspension string, but also the tower. Damping 
is introduced in the cable modeling, although no damping is 
considered for the towers. The basis of the modeling approach 
is the same as that of the model discussed above. This more 
complete three-dimensional model considers a six-span 
overhead transmission line including the conductors, the 
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shield wire and the insulator strings. This model is used to 
explain the failure of two towers in a line section due to 
conductor breakage in an ice storm. The time history of the 
torsional moments in the tower shafts at three different 
suspension structures is analyzed. This clearly shows that the 
torsional moment at the two structures adjacent to the broken 
conductor exceeds its design value. One of the structures, 
however, is assumed to resist this moment. The torsional 
moment decreases at this structure after the peak, while it 
continues to increase at the other structure. This process 
results in the failure of the structure with increasing moment 
about 0.5 s after the initial cable rupture. Following this 
failure, the third structure is subjected to large unbalanced 
longitudinal and torsional loads and fails. 

 

 

 
 
Fig. 3. Catenary configurations of a transmission line with three spans for 
modeling its dynamic response due to conductor breakage with: (a) rigid 
suspension rods, (b) flexible supports, (c) flexible supports and including 
overhead ground wire 
 

IV.  RECOMMENDATIONS FOR FUTURE WORK 
Our future work in this project will consist in elaborating a 

finite element model of a single span of transmission line 
whose dynamic behavior will be examined under different 
loads. The main goal will be to determine the ranges where 
these loads are associated with ice shedding and line damage. 
Vibrations may appear useful as long as they help removing 
ice without damaging the transmission line. It should be 
noted, however, that vibrations, strong enough to provoke ice 
shedding, have also been observed to weaken cables or 
damage towers under some circumstances (e.g. [14], where a 

tower ice removal technique using low-frequency, high-
amplitude vibrations was examined). 

A finite element model for a single span of overhead cable 
was constructed by using the software ADINA [1] and 
following the approach presented in [18]. The main directions 
towards the improvement of this model are as follows. 

• Defining ice as a different material by including its 
properties in the model. Thereby the effect of vibrations 
on the ice and on the cable can be considered separately, 
e.g. to allow for the fact that ice may break in the model 
without affecting the cable. 

• Extending the model of cable – ice composition for more 
than one span of a transmission line. 

• Including characteristics of the tower at the supporting 
end of the cable, which will allow simulating the effects 
of developing vibrations on the tower. 
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